LAG-3: Validation Of Next Generation Checkpoint Pathways

Frédéric Triebel, CSO/CMO
Immune Checkpoint Modulation & Combination Therapies
April 13, 2016
London, UK.
Notice: Forward Looking Statements

The purpose of the presentation is to provide an update of the business of Prima BioMed Ltd ACN 009 237 889 (ASX:PRR; NASDAQ:PBMD). These slides have been prepared as a presentation aid only and the information they contain may require further explanation and/or clarification. Accordingly, these slides and the information they contain should be read in conjunction with past and future announcements made by Prima BioMed and should not be relied upon as an independent source of information. Please refer to the Company's website and/or the Company’s filings to the ASX and SEC for further information.

The views expressed in this presentation contain information derived from publicly available sources that have not been independently verified. No representation or warranty is made as to the accuracy, completeness or reliability of the information. Any forward looking statements in this presentation have been prepared on the basis of a number of assumptions which may prove incorrect and the current intentions, plans, expectations and beliefs about future events are subject to risks, uncertainties and other factors, many of which are outside Prima BioMed’s control. Important factors that could cause actual results to differ materially from assumptions or expectations expressed or implied in this presentation include known and unknown risks. Because actual results could differ materially to assumptions made and Prima BioMed’s current intentions, plans, expectations and beliefs about the future, you are urged to view all forward looking statements contained in this presentation with caution. This presentation should not be relied on as a recommendation or forecast by Prima BioMed. Nothing in this presentation should be construed as either an offer to sell or a solicitation of an offer to buy or sell shares in any jurisdiction.
Lymphocyte Activation Gene-3 (LAG-3 or CD223)

- 4-IgSF domain transmembrane proteins.
- Same genomic organization (intron in D1, duplication event D1D2 vs D3D4)
- Close proximity on 12p13.
Immunological mechanisms elicited at the tumour site by LAG-3 versus IL-12: sharing a common Th1 anti-tumour immune pathway

J Pathol 2005; 205: 82–91
Immunological mechanisms elicited at the tumour site by LAG-3 versus IL-12: sharing a common Th1 anti-tumour immune pathway
LAG-3/MHC class II interaction
LAG-3 blocking mAb: an immune checkpoint inhibitor

LAG-3Ig fusion protein (IMP321): an immune checkpoint inhibitor

LAG-3Ig fusion protein (IMP321): an APC activator (primary MoA)
First-in class APC Activator

IMP321 (LAG-3Ig)
IMP321

• A soluble dimeric recombinant form of LAG-3 for the activation of the APC* network in the body
• Very stable human protein with high affinity for dendritic cells/monocytes (i.e. APC)
• Effectively tested as chemoimmunotherapy in several indications
• Extension to other indications possible by coupling with other first-line chemotherapy
• Can also be used at low doses as an adjuvant to cancer vaccines

*APC = Antigen Presenting Cell
IMP321
Soluble dimeric recombinant form of LAG-3Ig (fusion protein)

- Highly efficacious in multiple animal models of cancer and infectious disease
- Shown to be safe, non-immunogenic and efficacious in humans
- At low doses can be used as a T cell adjuvant for cancer vaccines
IMP321 (LAG-3Ig) as an MHC class II agonist (primary MoA)

mDC + hIgG1 (negative control), 4 hrs

mDC + 1 µg/ml LAG-3Ig, 4 hrs

Monocyte-derived DC (mDC): human blood monocytes are cultured with GM-CSF + IL-4 for 5 days and are differentiated into immature DC
IMP321 Clinical Trials Overview

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Patient Population</th>
<th>Compound</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>P001</td>
<td>healthy males</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
<tr>
<td>P002</td>
<td>healthy males</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
<tr>
<td>P003</td>
<td>metastatic renal cell carcinoma</td>
<td>IMP321 (monotherapy)</td>
<td>Completed</td>
</tr>
<tr>
<td>P004</td>
<td>metastatic breast carcinoma</td>
<td>IMP321 (chemo-immunotherapy)</td>
<td>Completed</td>
</tr>
<tr>
<td>P005</td>
<td>disease free melanoma</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
<tr>
<td>P006</td>
<td>metastatic melanoma</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
<tr>
<td>P007</td>
<td>advanced pancreatic cancer</td>
<td>IMP321 (chemo-immunotherapy)</td>
<td>Completed</td>
</tr>
<tr>
<td>P008</td>
<td>melanoma</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
<tr>
<td>P009</td>
<td>prostate carcinoma</td>
<td>IMP321 (adjuvant)</td>
<td>Completed</td>
</tr>
</tbody>
</table>
Rationale for combining chemotherapy with IMP321 (LAG-3Ig) in breast cancer
A defect on APC function induces a lower response to chemo

TLR4 dictates the efficacy of anti-tumor chemotherapy in humans. Kaplan-Meier estimates of time to metastasis between two groups of patients bearing the normal or mutated TLR4 alleles. The time to progression was analyzed in 280 women with nonmetastatic breast cancer with lymph node involvement who were treated by surgery followed by anthracycline-based chemotherapy and local irradiation.

In breast cancer patients who receive adjuvant chemotherapy, the analysis of metastasis-free survival showed an overall significantly lower percentage of metastasis-free patients in the group with mutated TLR4. The effect of the TLR4 mutation is to reduce antigen-presenting cell function. Such patients could not benefit fully from the immunological component of chemotherapy, i.e. the induction of cytotoxic CD8 T cell responses to tumor antigens released by the dying tumor cells.
A new field: combination of chemo with a non-specific (i.e. not a vaccine) active immunotherapy

An APC activator like IMP321 given after chemotherapy induces the APCs to mature and transport the apoptotic cell death tumor antigenic debris to the lymph nodes for presentation to the T cells. Importantly, a concentration of only a few ng/mL of IMP321 has been shown to be active in vitro on APCs, showing the great potency of IMP321 as an agonist of the immune system.
Pre-treatment serum sLAG-3 concentration predicts survival in breast cancer

Survival analysis of patients with breast carcinoma according to pre-treatment serum sLAG-3 concentration. The Kaplan–Meier curves for the duration of disease-free survival according to the concentration level of natural sLAG-3 found in the serum at time of first diagnosis are shown for progesterone receptor positive tumor patients.

Low sLAG-3 (<120 pg/ml), n=26;
High sLAG-3(> 120 pg/ml), n=43.

(Cancer Letters 2006, 235:147-153)
Chemo-immunotherapy in MBC
Administration Schedule

- Weekly paclitaxel, 3 weeks out of 4, combined with IMP321 every two weeks, the day after paclitaxel.
- Blood samples drawn before paclitaxel on Days 1 and 85 and at the final visit - testing the residual effect of IMP321 13 days after injection.

<table>
<thead>
<tr>
<th>Paclitaxel (80 mg/m²)</th>
<th>Cycle</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>END</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMP321 (mg)</th>
<th>Cycle</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mg</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1.25 mg</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>6.25 mg</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>END</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood samples</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>170</td>
</tr>
</tbody>
</table>
IMP321 Phase IIa Data in Metastatic Breast Cancer (MBC)

Compared to the historical control group
(254 patients with measurable disease at baseline on weekly, 3 weeks out of 4, paclitaxel (ECOG 2100 study)*

Clinical benefit: Only 10% of IMP321 patients progressed in contrast to more than 50% of patients in the historical control group

A 50% response rate was observed in IMP321 patients versus 25% in the historical control group receiving chemotherapy alone

> 50% PD expected (null hypothesis)

25% PR expected (null hypothesis)

IMP321 induces a sustained increase in primary target cells (MHC class II+ monocytes and DC) and secondary target cells (NK and CD8 T cells)

- Increased monocyte, dendritic cell, NK and memory CD8 T cell counts
- Sustained for at least six months as samples are analyzed 13 days after the last injection (i.e. just before the next IMP321 injection)
Activation of monocytes by IMP321: all markers are up

- 8 activation markers analyzed on fresh CD14\(^+\) whole blood cells: CD11a, CD11b, CD16, CD35, CD54, CD64, CD80 and CD86
- IMP321 dose-response activation of residual monocyte responses at day 13 post-injection in all 8 cases (D170 versus D1)
- Activation sustained for months as samples are analyzed 13 days after the last injection (i.e. just before the next IMP321 injection)
AIPAC
Active Immunotherapy PAClitaxel
AIPAC – Overall Study Design

Title
AIPAC (Active Immunotherapy PAClitaxel): A multicentre, Phase IIb, randomised, double blind, placebo-controlled study in hormone receptor-positive metastatic breast carcinoma patients receiving IMP321 (LAG-3Ig fusion protein) or placebo as adjunctive to a standard chemotherapy treatment regimen of paclitaxel.

Design
• Open label, dose escalation (run-in stage)
• Randomized, double-blind, placebo-controlled (Phase IIb stage)
• 211 breast cancer patients (stage IV, hormone receptor-positive)
• Paclitaxel + IMP321 vs. paclitaxel + placebo
Rationale for combining IMP321 (LAG-3Ig) with an anti-PD1 blocking mAb
Combining IMP321 with a PD-1 blocking mAb increases CD8$^+$ T cells response in vitro

Synergy of IMP321 and neutralizing anti-PD-1 antibody on T cell response

PBMCs were stimulated with antigenic peptides in the presence or in the absence of low dose of IMP321 (30 ng/ml) with or without a neutralizing anti-PD-1 antibody at low dose (30 ng/ml) or high dose (1,000 ng/ml). The CD8$^+$ T cell response was analyzed by monitoring the expression of activation marker on cell surface or measuring the release of cytokine in the cell supernatant.

IMP321 (30 ng/ml)
- - + + -

Anti-PD-1 Ab (30 ng/ml)
- + - + -

Anti-PD-1 Ab (1,000 ng/ml)
- - - - +
Combining LAG-3Ig with a PDL-1 blocking mAb helps controlling tumor growth

BALB/c mice were injected s.c. with the CT26 colon carcinoma cell line.

Ten days post tumor implantation, groups of 12 mice were injected with PBS, 10 mg/kg anti-PDL-1 and/or 1 mg/kg mLAG-3Ig, i.p.
TACTI-mel
Two ACTive Immunotherapeutics in melanoma
TACTI-mel – Overall Study Design

• **Title**

 TACTI-mel (Two ACTive Immunotherapeutics in melanoma): A multicentre, open label, dose escalation, Phase 1 study in patients with unresectable or metastatic melanoma receiving IMP321 (LAG-3Ig fusion protein) as an adjunctive therapy to anti-PD-1 therapy with pembrolizumab

• **Design**

 • Open label, dose escalation

 • 24 melanoma patients (unresectable stage III or stage IV)

 • Keytruda® + IMP321 at 1, 6 or 30 mg
THANK YOU